Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Harmful Algae ; 96: 101819, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32560833

RESUMO

Studies on phytoplankton and in particular Harmful Algal Blooms (HABs) species in southern Mediterranean waters are scarce. We performed from April 2008 to June 2009 weekly investigations on microphytoplankton community structure and abundance in two contrasted marine ecosystems located in the western Moroccan Mediterranean coast, M'diq Bay and Oued Laou Estuary. Simultaneously, we measured the main physico-chemical parameters. Globally, the two studied areas showed comparable values of the assessed abiotic environmental factors. Temperature and salinity followed seasonal variation with values ranging from 13.5 °C to 21.4 °C and 31 to 36.8, respectively. Average nutrient values in surface water ranged from 0.7 to 45.76 µM for dissolved inorganic nitrogen, 0.02-2.10 µM for PO4 and 0.23-17.46 µM for SiO4 in the study areas. A total of 92 taxa belonging to 8 taxonomic classes were found. The highest number of microphytoplankton abundance reached 1.2 × 106 cells L-1 with diatoms being the most abundant taxa. Factorial Discriminant Analysis (FDA) and Spearman correlation test showed a significant seasonal discrimination of dominant microphytoplankton species. These micro-organisms were associated with different environmental variables, in particular temperature and salinity. Numerous HABs species were encountered regularly along the year. Although Dinophysis species and Prorocentrum lima were present in both sites, no Lipophilic Shellfish Poisoning was detected for the analyzed bivalve mollusks. Domoic acid (DA), produced by toxic species of Pseudo-nitzschia was found with concentrations up to 18 µg DA g-1 in the smooth clam Callista chione. Data showed that the observed persistent and dramatic Paralytic Shellfish Poisoning (PSP) intoxication of mollusks resulted probably of Gymnodinium catenatum proliferations in both studied areas. Contrary to C. chione, the cockle Achanthocardia tuberculatum showed a permanent and extremely high toxicity level during the 15 months survey with up to 7545 µg Equivalent Saxitoxin kg-1 flesh (ten times higher than the sanitary threshold of 800 µg eqSTX Kg-1flesh). The present work highlights for the first time the dynamic of microphytoplankton including HABs species and their associated toxin accumulation in the commercially exploited shellfish in the southern western Mediterranean waters of Morocco. Furthermore, the acquired data will help us to improve the monitoring of HABs species and related toxins in these coastal marine systems.


Assuntos
Proliferação Nociva de Algas , Fitoplâncton , Animais , Ecossistema , Marrocos , Estações do Ano
2.
PLoS One ; 9(4): e94110, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718653

RESUMO

Microscopical and molecular analyses were used to investigate the diversity and spatial community structure of spring phytoplankton all along the estuarine gradient in a macrotidal ecosystem, the Baie des Veys (eastern English Channel). Taxa distribution at high tide in the water column appeared to be mainly driven by the tidal force which superimposed on the natural salinity gradient, resulting in a two-layer flow within the channel. Lowest taxa richness and abundance were found in the bay where Teleaulax-like cryptophytes dominated. A shift in species composition occurred towards the mouth of the river, with the diatom Asterionellopsis glacialis dramatically accumulating in the bottom waters of the upstream brackish reach. Small thalassiosiroid diatoms dominated the upper layer river community, where taxa richness was higher. Through the construction of partial 18S rDNA clone libraries, the microeukaryotic diversity was further explored for three samples selected along the surface salinity gradient (freshwater - brackish - marine). Clone libraries revealed a high diversity among heterotrophic and/or small-sized protists which were undetected by microscopy. Among them, a rich variety of Chrysophyceae and other lineages (e.g. novel marine stramenopiles) are reported here for the first time in this transition area. However, conventional microscopy remains more efficient in revealing the high diversity of phototrophic taxa, low in abundances but morphologically distinct, that is overlooked by the molecular approach. The differences between microscopical and molecular analyses and their limitations are discussed here, pointing out the complementarities of both approaches, for a thorough phytoplankton community description.


Assuntos
Biodiversidade , Biota , Estuários , Fitoplâncton/classificação , Clima , Células Clonais , DNA Ribossômico/genética , Ecossistema , Eucariotos/genética , Eucariotos/isolamento & purificação , França , Água Doce , Biblioteca Gênica , Filogenia , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação , RNA Ribossômico 18S/genética , Rios , Salinidade , Água do Mar , Temperatura
3.
PLoS One ; 7(8): e42780, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916158

RESUMO

BACKGROUND: DNA barcoding offers an efficient way to determine species identification and to measure biodiversity. For dinoflagellates, an ancient alveolate group of about 2000 described extant species, DNA barcoding studies have revealed large amounts of unrecognized species diversity, most of which is not represented in culture collections. To date, two mitochondrial gene markers, Cytochrome Oxidase I (COI) and Cytochrome b oxidase (COB), have been used to assess DNA barcoding in dinoflagellates, and both failed to amplify all taxa and suffered from low resolution. Nevertheless, both genes yielded many examples of morphospecies showing cryptic speciation and morphologically distinct named species being genetically similar, highlighting the need for a common marker. For example, a large number of cultured Symbiodinium strains have neither taxonomic identification, nor a common measure of diversity that can be used to compare this genus to other dinoflagellates. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study was to evaluate the Internal Transcribed Spacer units 1 and 2 (ITS) of the rDNA operon, as a high resolution marker for distinguishing species dinoflagellates in culture. In our study, from 78 different species, the ITS barcode clearly differentiated species from genera and could identify 96% of strains to a known species or sub-genus grouping. 8.3% showed evidence of being cryptic species. A quarter of strains identified had no previous species identification. The greatest levels of hidden biodiversity came from Scrippsiella and the Pfiesteriaceae family, whilst Heterocapsa strains showed a high level of mismatch to their given species name. CONCLUSIONS/SIGNIFICANCE: The ITS marker was successful in confirming species, revealing hidden diversity in culture collections. This marker, however, may have limited use for environmental barcoding due to paralogues, the potential for unidentifiable chimaeras and priming across taxa. In these cases ITS would serve well in combination with other markers or for specific taxon studies.


Assuntos
Código de Barras de DNA Taxonômico , Dinoflagellida/genética , Marcadores Genéticos , Ribossomos/metabolismo , Animais , Dinoflagellida/classificação , Dinoflagellida/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia
4.
Mar Pollut Bull ; 65(10-12): 478-89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22640918

RESUMO

Atoll lagoons display a high diversity of trophic states due mainly to their specific geomorphology, and probably to their level and mode of human exploitation. We investigated the functioning of the Ahe atoll lagoon, utilized for pearl oyster farming, through estimations of photosynthetic parameters (pulse amplitude modulation fluorometry) and primary production ((13)C incorporation) measurements of the size structured phytoplankton biomass (<2 µm and >2 µm). Spatial and temporal scales of variability were surveyed during four seasons, over 16 months, at four sites within the lagoon. While primary production (P) was dominated by the picophytoplankton, its biomass specific primary productivity (P(B)) was lower than in other atoll lagoons. The variables size fraction of the phytoplankton, water temperature, season, the interaction term station*fraction and site, explained significantly the variance of the data set using redundancy analysis. No significant trends over depth were observed in the range of 0-20 m. A clear spatial pattern was found which was persistent over the seasons: south and north sites were different from the two central stations for most of the measured variables. This pattern could possibly be explained by the existence of water cells showing different water residence time within the lagoon. Photoacclimation strategies of the two size fractions differed through their light saturation coefficient (higher for picophytoplankton), but not through their maximum photosynthetic capacity (ETR(max)). Positive linear relationships between photosynthetic parameters indicated that their dynamic was independent of light availability in this ecosystem, but most probably dependent on nutrient availability and/or rapid changes in the community structure. Spatial and temporal patterns of the measured processes are then further discussed in the context of nutrient availability and the possible role of cultured oysters in nutrient recycling.


Assuntos
Clorofila/metabolismo , Fotossíntese/fisiologia , Fitoplâncton/fisiologia , Animais , Biomassa , Clorofila/análise , Recifes de Corais , Monitoramento Ambiental , Ciclo do Nitrogênio , Pinctada , Polinésia , Estações do Ano , Água do Mar/química
5.
Protist ; 162(5): 738-61, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21715228

RESUMO

The Pavlovophyceae (Haptophyta) contains four genera (Pavlova, Diacronema, Exanthemachrysis and Rebecca) and only thirteen characterised species, several of which are important in ecological and economic contexts. We have constructed molecular phylogenies inferred from sequencing of ribosomal gene markers with comprehensive coverage of the described diversity, using type strains when available, together with additional cultured strains. The morphology and ultrastructure of 12 of the described species was also re-examined and the pigment signatures of many culture strains were determined. The molecular analysis revealed that sequences of all described species differed, although those of Pavlova gyrans and P. pinguis were nearly identical, these potentially forming a single cryptic species complex. Four well-delineated genetic clades were identified, one of which included species of both Pavlova and Diacronema. Unique combinations of morphological/ultrastructural characters were identified for each of these clades. The ancestral pigment signature of the Pavlovophyceae consisted of a basic set of pigments plus MV chl cPAV, the latter being entirely absent in the Pavlova + Diacronema clade and supplemented by DV chl cPAV in part of the Exanthemachrysis clade. Based on this combination of characters, we propose a taxonomic revision of the class, with transfer of several Pavlova species to an emended Diacronema genus. The evolution of the class is discussed in the context of the phylogenetic reconstruction presented.


Assuntos
Haptófitas/classificação , Filogenia , Evolução Molecular , Haptófitas/genética , Haptófitas/isolamento & purificação , Haptófitas/ultraestrutura , Dados de Sequência Molecular
6.
PLoS One ; 5(11): e13991, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21085582

RESUMO

BACKGROUND: Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known "species", as a reference to measure the natural diversity in three marine environments. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. CONCLUSIONS/SIGNIFICANCE: COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of natural diversity in dinoflagellates. This highlights the extent to which we underestimate microbial diversity in the environment.


Assuntos
Biodiversidade , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/genética , Variação Genética , Animais , Oceano Atlântico , Região do Caribe , Análise por Conglomerados , DNA Mitocondrial/química , DNA Mitocondrial/genética , Bases de Dados de Ácidos Nucleicos , Dinoflagellida/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , Proteínas de Protozoários/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Especificidade da Espécie
7.
Plant Physiol Biochem ; 42(3): 257-64, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15051050

RESUMO

Phytoplankton live in fluctuating environments where many factors such as grazing pressure, sinking, light availability, nutrient uptake and turnover influence the distribution of phytoplankton in time and space. The purpose of this study was to investigate if under conditions of depletion of inorganic nitrogen, as recorded in summer in naturals waters, phytoplanktonic species have the capability of using organic nitrogen sources, including free or combined amino acids, in addition to inorganic nitrogen. The study has focussed on histidine, the degradation of which yielding potentially three nitrogen atoms for each molecule of histidine. Chlamydomonas reinhardtii (CCAP 11/32A) was cultivated axenically with two different sources of nitrogen (histidine and/or ammonium). In the presence of histidine as sole source of nitrogen, cell growth was comparable to that observed with the same concentration of nitrogen in ammonium form. In the presence of both histidine and ammonium, histidine degradation was observed only when the concentration of ammonium was depleted. Under these conditions, the first two enzymes of histidine degradation pathway, histidase (EC 4.3.1.3) and urocanase (EC 4.2.1.49) were produced and were co-ordinately regulated. Histidase activity was also controlled by succinate and glutamate as carbon sources. Histidase was purified 1018-fold and partially characterized. The molecular weight of the native enzyme was estimated to 152.4 kDa corresponding to four subunits of 38.1 kDa. The enzyme did not exhibit classical Michaelis-Menten kinetics but showed a relationship between the rate of catalysis (V) and the concentration of substrate (S), characteristic of negative allosteric behavior. A Hill coefficient of 4 was measured for histidine concentrations higher than 20.5 mM.


Assuntos
Aminoácidos/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/metabolismo , Histidina/metabolismo , Animais , Carbono/metabolismo , Meios de Cultivo Condicionados , Concentração de Íons de Hidrogênio , Cinética , Nitrogênio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Temperatura
8.
Mar Biotechnol (NY) ; 6(1): 67-82, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14612986

RESUMO

The antifouling activity of extracts (aqueous, ethanol, and dichloromethane) of 9 marine macroalgae against bacteria, fungi, diatoms, macroalgal spores, mussel phenoloxidase activity, and barnacle cypris larvae has been investigated in relation to season in bimonthly samples from the Bay of Concarneau (France). Of the extracts tested, 48.2% were active against at least one of the fouling organisms, and of these extracts, 31.2% were seasonally active with a peak of activity in summer corresponding to maximal values for water temperature, light intensity, and fouling pressure, and 17% were active throughout the year. This seasonal activity may be adaptive as it coincides with maximal fouling pressure in the Bay of Concarneau. Dichloromethane extracts of Rhodophyceae were the most active in the antifouling assays.


Assuntos
Fatores Biológicos/farmacologia , Eucariotos/química , Estações do Ano , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Fatores Biológicos/química , Bivalves/enzimologia , Sulfato de Cobre/farmacologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , França , Larva/efeitos dos fármacos , Larva/fisiologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Água do Mar , Thoracica/fisiologia , Compostos de Trialquitina/farmacologia
9.
Biotechnol Lett ; 25(23): 2017-22, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14719816

RESUMO

In microalgal culture collections, as in many biological resource centres, cryoconservation is the most attractive method for the long-term, secure storage of living material. Nannochloropsis oculata, a marine unicellular alga, is of interest in the field of biotechnology due to its high lipid content. Of various cryoprotectants tested for their toxicity and for their ability to prevent cryoinjury, glycerol (final concentration 1.1 M) was the most efficient. When glycerol-treated cultures were submitted to a strictly regulated cooling rate (-3 degrees C min(-1)), they attained the control culture density within 13 d after thawing.


Assuntos
Técnicas de Cultura de Células/métodos , Criopreservação/métodos , Crioprotetores/farmacologia , Eucariotos/efeitos dos fármacos , Eucariotos/fisiologia , Biologia Marinha/métodos , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Meios de Cultura/farmacologia , Dimetil Sulfóxido/farmacologia , Eucariotos/classificação , Eucariotos/citologia , Glicerol/farmacologia , Metanol/farmacologia , Prolina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...